Numerical Investigation to Fuzzy Volterra Integro-Differential Equations via Residual Power Series Method
نویسندگان
چکیده
منابع مشابه
The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملNUMERICAL STUDY OF NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN'S METHOD†
The main purpose of this paper is to consider Adomian's decomposition method in non-linear Volterra integro-differential equations. The advantages of this method, compared with the recent numerical techniques (in particular the implicitly linear collocation methods) , and the convergence of Adomian's method applied to such nonlinear integro-differential equations are discussed. Finally, by ...
متن کاملStochastic Volterra integro-differential equations: stability and numerical methods
We consider the reliability of some numerical methods in preserving the stability properties of the linear stochastic functional differential equation ẋ(t) = αx(t) + β ∫ t 0 x(s)ds+ σx(t− τ )Ẇ (t), where α, β, σ, τ ≥ 0 are real constants, and W (t) is a standard Wiener process. We adopt the shorthand notation of ẋ(t) to represent the differential dx(t) etc. Our choice of test equation is a stoc...
متن کاملNumerical Treatments for Volterra Delay Integro-differential Equations
This paper presents a new technique for numerical treatments of Volterra delay integro-differential equations that have many applications in biological and physical sciences. The technique is based on the mono-implicit Runge — Kutta method (described in [12]) for treating the differential part and the collocation method (using Boole’s quadrature rule) for treating the integral part. The efficie...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ASM Science Journal
سال: 2020
ISSN: 1823-6782
DOI: 10.32802/asmscj.2020.sksm26(31)